updated October 2024
47- “Oxidation of Four Monoterpenoid Indole Alkaloid Classes by Three Cytochrome P450 Monooxygenases from Tabernaemontana litoralis”, Z. Mai, K. Kim, M. B. Richardson, D. A. R. Deschênes, J. J. Oswaldo Garza-Garcia, M. Shahsavarani, J. O. Perley, D. I. Njoku, G. Deslongchamps, V. De Luca, Y. Qu, The Plant Journal, 2024.
https://doi.org/10.1101/2024.07.29.605674
46- “Parallel evolution of γ-tocopherol N-methyltransferases leads to the biosynthesis of vobasine in Tabernaemontana elegans and Catharanthus roseus”, M. Farzana, B. Richardson, D. Deschênes, D. Njoku, G. Deslongchamps, and Y. Qu, Frontiers in Plant Science, 2024. https://doi.org/10.3389/fpls.2024.1451298
45- ” Revisiting the conformational analysis of unsaturated organic compounds using the bent bond / antiperiplanar hypothesis“, G. Deslongchamps, N. Vatcher, P. Deslongchamps, Tetrahedron, 2021, 92, 132249-132256.
https://doi.org/10.1016/j.tet.2021.132249
44- “Bent Bond/Antiperiplanar Hypothesis and the Chemical Reactivity of Annulenes“, G. Deslongchamps, P. Deslongchamps, J. Org. Chem., 2020, 85, 8645-8655.
https://doi.org/10.1021/acs.joc.0c01069
43- “Bent Bond/Antiperiplanar Hypothesis: Modulating the Reactivity and the Selectivity in the Glycosylation of Bicyclic Pyranoside Models”, J.-F. Parent, G. Deslongchamps, P. Deslongchamps, J. Org. Chem., 2020, 85, 4220-4236.
https://doi.org/10.1021/acs.joc.9b03412
42- “Matrix metalloproteinase 13 activity is required for normal and hypoxia-induced precocious hatching in zebrafish embryos“, C. D. Small, M. el-Khoury, G. Deslongchamps, T. J. Benfey, B. D. Crawford, J. Dev. Biol., 2020, 8, 3-19.
https://doi.org/10.3390/jdb8010003
41- “Applying the bent bond / antiperiplanar hypothesis to the stereoselective glycosylation of bicyclic furanosides“, J.-F. Parent, X. Bertrand, G. Deslongchamps, P. Deslongchamps, . J. Org. Chem., 2020, 85, 758-773.
https://doi.org/10.1021/acs.joc.9b02791
40- “Thermal Rearrangement of Optically Active Tetradeuterated 2-methoxymethyl-methylenecyclopropane and the Bent Bond / Antiperiplanar Hypothesis“, G. Deslongchamps, P. Deslongchamps, Org. Biomol. Chem., 2019, 17, 7007-7012.
https://doi.org/10.1039/C9OB01030K
39- “Bent Bonds and the Antiperiplanar Hypothesis. A Model To Account for Sigmatropic [1,n ]Hydrogen Shifts”, G. Deslongchamps, P. Deslongchamps, J. Org. Chem., 2018, 83, 10383-10388.
https://doi.org/10.1021/acs.joc.8b01472
38- “Bent Bonds (τ) and the Antiperiplanar Hypothesis—The Chemistry of Cyclooctatetraene and Other C8H8 Isomers”, G. Deslongchamps, P. Deslongchamps, J. Org. Chem., 2018, 83, 5751-5755.
https://doi.org/10.1021/acs.joc.8b00809
37- “Bent bonds and the antiperiplanar hypothesis – A simple model to rationalize 1,3-sigmatropic alkyl shifts”, G. Deslongchamps, P. Deslongchamps, Org. Biomol. Chem., 2016, 14, 7754-7767.
https://doi.org/10.1039/C6OB01139J
“Spatial ability and learning from visualizations in STEM disciplines” in “Space in Mind: Concepts and Ontologies for Spatial Education”, Hinze, S.R., Williams, V.M., Shultz, M.J., Deslongchamps, G., Williamson, K.C., & Rapp, D.N.; D. Montello, K. Grossner, D. Janelle Eds., MIT Press, 2014. Chap. 5, pp. 99-118, ISBN: 9780262028295
36- “Corrigendum: “Crystallographic Snapshot of an Arrested Intermediate in the Biomimetic Activation of CO2” S.L. Ackermann, D.J. Wolstenholme, C. Frazee, G. Deslongchamps, A. Decken, S.H.M. Riley, G.S. McGrady, Angew. Chem Int. Ed., 2015, 54, 164-168.
https://doi.org/10.1002/anie.20140716
35- “Crystallographic Snapshot of an Arrested Intermediate in the Biomimetic Activation of CO2” S. L. Ackermann, D. J. Wolstenholme, C. Frazee, G Deslongchamps, S. H. M. Riley, A. Decken and G. S. McGrady Angew. Chem. Int. Ed. Engl., 2015, 54, 164-168.
https://doi.org/10.1002/anie.201407165
34- “Textbook treatments of electrostatic potential maps in general and organic chemistry” Hinze, S. R., Williamson, V. M., Deslongchamps, G., Shultz, M. J., Williamson, K. C., & Rapp, D. N. J. Chem. Educ., 2013, 90(10), 1275-1281.
https://doi.org/10.1021/ed300395e
33- “Bent bonds and the antiperiplanar hypothesis as a simple model to predict Diels-Alder reactivity: Retrospective or Perspective?“, G. Deslongchamps, P. Deslongchamps Tetrahedron, 2013, 69, 6022-6033.
https://doi.org/10.1016/j.tet.2013.05.008
32- “When do spatial abilities support student comprehension of STEM visualizations?“ Hinze, S. R., Williamson, V. M., Shultz, M. J., Williamson, K. C., Deslongchamps, G., & Rapp, D. N. Cognitive Processing – The International Quarterly of Cognitive Science, 2013, 14, 129-142.
https://doi.org/10.1007/s10339-013-0539-3
31- “Beyond the ball-and-stick: Students’ processing of novel STEM visualizations”, S. R. Hinze, D. N. Rapp, V. M. Williamson, M. J. Shultz, G. Deslongchamps, K. C. Williamson, Learning & Instruction, 2013, 26, 12-21.
https://doi.org/10.1016/j.learninstruc.2012.12.002
30- “Identifying Student Use of Ball-and-Stick Images versus Electrostatic Potential Map Images via Eye Tracking” Williamson, V. M., Hegarty, M., Deslongchamps, G., Williamson, K. C., Shultz, M. J. J. Chem. Educ., 2013, 90, 159-164.
https://doi.org/10.1021/ed200259j
29- “Bent bonds, the antiperiplanar hypothesis and the theory of resonance. A simple model to understand reactivity in organic chemistry”, G. Deslongchamps, P. Deslongchamps,Org. Biomol. Chem., 2011, 9, 5321-5333.
https://doi.org/10.1039/c1ob05393k
28- “Identifying Representational Competence with Multi-Representational Displays”, M. Stieff, M. Hegarty, G. Deslongchamps, Cognition & Instruction, 2011, 29(1), 123-145.
https://doi.org/10.1021/ed200259j
27-“PostDock: A Novel Visualization Tool for the Analysis of Molecular Docking”, E. A. Wiley, G. Deslongchamps, Computing and Visualization in Science, 2009, 12, 1-7.
https://doi.org/10.1007/s00791-006-0042-9
26-“Reverse-docking study of the organocatalyzed asymmetric Strecker hydrocyanation of aldimines and ketimines”, D. J. Harriman, G. F. Deleavey, A. Lambropoulos, G. Deslongchamps, Tetrahedron., 2007, 63, 13032-13038.
https://doi.org/10.1016/j.tet.2007.10.009
25-“In silico correlation of enantioselectivity for the TADDOL catalyzed asymmetric hetero-Diels-Alder reaction”, D.J. Harriman, A. Lambropoulos, G. Deslongchamps, Tetrahedron Lett., 2007, 48, 689-692.
https://doi.org/10.1016/j.tetlet.2006.11.101
24-“LGA-Dock/EM-Dock: Exploring Lamarckian genetic algorithms and energy-based local search for ligand-receptor docking”, E. A. Wiley, M. MacDonald, A. Lambropoulos, D.J. Harriman, G. Deslongchamps, Can. J. Chem., 2006, 84, 1-8.
https://doi.org/10.1139/v06-012
23- “Reverse-Docking Study of the TADDOL Catalyzed Asymmetric Hetero-Diels-Alder Reaction”, D. J. Harriman, G. Deslongchamps, J. Mol. Model., 2006, 12, 793-797.
https://doi.org/10.1007/s00894-006-0097-z
22- “Reverse-docking as a computational tool for the study of asymmetric organocatalysis”, D.J. Harriman, G. Deslongchamps, J. Comput.-Aided Mol. Design., 2004, 18, 303-308.
https://doi.org/10.1023/B:JCAM.0000047813.47656.36
21- “Dual Binding Mode of Methylmethanetriacetic Acid to Tripodal Amidopyridine Receptors”, P. Ballester*, M. Capó, A. Costa, P.M. Deyà, R. Gomila, A. Decken and G. Deslongchamps, J. Org. Chem., 2002, 67, 8832-8841.
https://pubs.acs.org/doi/abs/10.1021/jo025787l
20- “Selective Binding of cis-1,3,5-Cyclohexane Tricarboxylic Acid vs Its Epimeric trans Isomer by a Triamidopyridine Receptor; Crystal Structures of the 1:1 Complexes” Ballester, P., Capó, M., Costa, A., Deyà, P. M., Gomila, R., Decken A., Deslongchamps G., Org. Lett., 2001, 3, 267-270.
https://pubs.acs.org/doi/abs/10.1021/ol0069148
19- “An Effective Fluorescent Sensor for Choline Containing Phospholipids” S. Tomas, R. Prohens, G. Deslongchamps, P. Ballester, A. Costa, Angew. Chem. Int. Ed. Engl., 1999, 38, 2208-2211.
https://doi.org/10.1002/(SICI)1521-3773(19990802)38:15<2208::AID-ANIE2208>3.0.CO;2-9
18- “Influence of Remote Intramolecular Hydrogen Bonds on the Thermodynamics of Molecular Recognition of cis-1,3,5-Cyclohexanetricarboxylic Acid” Ballester, P., Costa, A., Deya, P. M., Vega, M., Morey, J. Deslongchamps, G. Tetrahedron Lett., 1999, 40, 171-174.
https://doi.org/10.1016/S0040-4039(98)80050-6
17- “Tricyclic Scaffolds for the Rapid Assembly of Abiotic Receptors” Lonergan, D. G., Deslongchamps, G. Tetrahedron, 1998, 54, 14041-14052.
https://doi.org/10.1016/S0040-4020(98)00881-3
16- “A Remarkable Adenine-Binding Cleft Based On A Hydroxyimide Scaffold” Lonergan, D. G., Deslongchamps, G., Tomas, S. Tetrahedron Lett., 1998, 39, 7861-7864.
https://doi.org/10.1016/S0040-4039(98)01759-6
15- “Comparative Probe for Stacking Interactions in Simple A:T Base Pair Mimics” Lonergan, D. G., Halse, J., Deslongchamps, G. Tetrahedron Lett., 1998, 39, 6865-6868.
https://doi.org/10.1016/S0040-4039(98)01498-1
14- “Synthesis and Solid-State Self-Assembly of a Bicyclic Dilactam” Wang, Y., Decken, A. and Deslongchamps, G. Tetrahedron, 1998, 54, 9043-9054.
https://doi.org/10.1016/S0040-4020(98)00562-6
13- “X-ray structure of the 1:1 complex of a tripodal receptor and cis-1,3,5-cyclohexanetricarboxylic acid” Ballester, P., Costa, A., Deyˆ, P.M., Deslongchamps, G., Mink, D., Decken, A., Prohens, R. Tomas, S., Vega, M., J. Chem. Soc. Chem. Commun., 1997, 357-358.
https://doi.org/10.1039/A607461H
12- “A Novel Scaffold for the Modular Assembly of Receptor Models“, Mink, D. Deslongchamps, G., Tetrahedron Lett., 1996, 37, 7035-7038.
https://doi.org/10.1016/0040-4039(96)01542-0
11- “An Improved Method for the One-Carbon Homologation of Ketones with Acidic alpha-Hydrogens“, Mink, D., Deslongchamps, G., SynLett., 1996, 875-876.
https://doi.org/10.1055/s-1996-5616
10- “A Convergent Hydroxyimide Module for Molecular Recognition“, Lonergan, D. G., Riego, J., Deslongchamps G., Tetrahedron Lett., 1996, 37, 6109-6112.
https://doi.org/10.1016/0040-4039(96)01303-2
9- “Molecular Recognition of cis -1,3,5-Cyclohexane Tricarboxylic Acid“, Ballester, P., Costa, A., Deyà, P. M., González, J. F., Rotger, M. C., Deslongchamps, G., Tetrahedron Lett., 1994, 35, 3813-3816.
https://doi.org/10.1016/S0040-4039(00)73106-6
8- “Unusual Weiss-Cook condensation of dimethyl 2,3-dioxobutanedioate and dimethyl 3-oxoglutarate“, Deslongchamps, G., Mink, D., Boyle, P. D., Singh, N., Can. J. Chem., 1994, 72, 1162-1164.
https://doi.org/10.1139/v94-148
7- “Convergent Functional Groups 13. High-Affinity Complexation of Adenosine Derivatives with Induced Binding Pockets“, Conn, M.M., Deslongchamps, G., de Mendoza, J., Rebek, J. Jr., J. Am. Chem. Soc., 1993, 115, 3548-3557.
https://pubs.acs.org/doi/abs/10.1021/ja00062a020
6- “Molecular Recognition in Water: New Receptors for Adenine Derivatives“, Rotello, V. M., Viani, E. A., Deslongchamps, Murray, B. A., and Rebek, J. Jr., J. Am. Chem. Soc., 1993, 115, 797-798.
https://doi.org/10.1021/ja00055a066
5- “A Synthetic Receptor for Cyclic Adenosine Monophosphate“, Deslongchamps, G., Galán, A., de Mendoza, J., Rebek, J. Jr., Angew. Chem. Int. Ed. Engl., 1992, 31, 61-63.
https://doi.org/10.1002/anie.199200611
4- “A Synthetic Receptor for Dinucleotides“, Galán, A., de Mendoza, J., Toiron, C., Bruix, M., Deslongchamps, G., Rebek, J. Jr., J. Am. Chem. Soc., 1991, 113, 9424-9425.
https://doi.org/10.1021/ja00024a090
3- “Enantioselective Complexation of Flexible and Rigid Substrates through Molecular Recognition“, Famulok, M., Jeong, K.-S., Deslongchamps, G., Rebek, J. Jr., Angew. Chem. Int. Ed. Engl., 1991, 30, 858-860.
https://doi.org/10.1002/anie.199108581
2- “Convergent Functional Groups. X. Molecular Recognition of Neutral Substrates“, Jeong, K.-S.; Tjivikua, T.; Muehldorf, A.; Deslongchamps, G.; Famulok, M.; Rebek, J. Jr., 1991 , J. Am. Chem. Soc. 113, 201-209.
https://doi.org/10.1021/ja00001a029
1- “Convergent Functional Groups 8. Flexible Model Receptors for Adenine Binding“,Tjivikua, T.; Deslongchamps, G.; Rebek, J. Jr., 1990 , J. Am. Chem. Soc. 112, 8408-8414.
https://doi.org/10.1021/ja00179a027