BBAH #18: P. Deslongchamps,  A new mechanism for the thermal and photochemical Diels-Alder cycloaddition based on the bent bond / antiperiplanar hypothesis orbital modelJ. Mol. Struct2022, 1264, 133288-133305.
https://doi.org/10.1016/j.molstruc.2022.133288

BBAH #17: P. Deslongchamps, Stereochemistry of Eʹ and Eʹʹ decarboxylative-dehydration reactions and the bent bond / antiperiplanar hypothesis orbital modelTetrahedron2021102, 132538-132551.
https://doi.org/10.1016/j.tet.132538

BBAH #16: G. Deslongchamps, N. Vatcher, P. Deslongchamps, Revisiting the conformational analysis of unsaturated organic compounds using the bent bond / antiperiplanar hypothesisTetrahedron2021, 92, 132249-132256.
https://doi.org/10.1016/j.tet.2021.132249

BBAH #15: P. Deslongchamps, Bent bond / antiperiplanar hypothesis and antiaromatic, aromatic and nonaromatic molecules, Tetrahedron202189, 132161-132183.
https://doi.org/10.1016/j.tet.2021.132161

BBAH #14: P. Deslongchamps, The conformation and reactivity of butadiene and the bent bond/antiperiplanar hypothesis orbital modelTetrahedron2021, 85, 132060-131465.
https://doi.org/10.1016/j.tet.2021.132060

BBAH #13: P. Deslongchamps, The thermal rearrangements of naphthalene and azulene. An analysis through the bent bond and antiperiplanar hypothesis orbital modelTetrahedron2021, 82, 131956-131969.
https://doi.org/10.1016/j.tet.2021.131956

BBAH #12: P. Deslongchamps, The bent bond / antiperiplanar hypothesis and the thermal rearrangement of cyclopropyl halides and tosylatesTetrahedron202076, 131416-131420.
https://doi.org/10.1016/j.tet.2020.131416

BBAH #11: G. Deslongchamps, P. Deslongchamps, Bent Bond/Antiperiplanar Hypothesis and the Chemical Reactivity of Annulenes. J. Org. Chem., 202085, 8645-8655.
https://doi.org/10.1021/acs.joc.0c01069

BBAH #10: J.-F. Parent, G. Deslongchamps, P. Deslongchamps, Bent Bond/Antiperiplanar Hypothesis: Modulating the Reactivity and the Selectivity in the Glycosylation of Bicyclic Pyranoside Models. J. Org. Chem., 202085, 4220-4236.
https://doi.org/10.1021/acs.joc.9b03412

BBAH #9: J.-F. Parent, X. Bertrand, G. Deslongchamps, P. Deslongchamps, Applying the bent bond / antiperiplanar hypothesis to the stereoselective glycosylation of bicyclic furanosides. J. Org. Chem., 202085, 758-773.
https://doi.org/10.1021/acs.joc.9b02791

BBAH #8: G. Deslongchamps, P. Deslongchamps, Thermal Rearrangement of Optically Active Tetradeuterated-2-methoxymethyl-methylenecyclopropane and the Bent Bond/Antiperiplanar Hypothesis. Org. Biomol. Chem., 201917, 7007-7012.
https://doi.org/10.1039/C9OB01030K

BBAH #7: G.Deslongchamps, P. Deslongchamps, Bent Bonds and the Antiperiplanar Hypothesis. A Model to Account for Sigmatropic [1,n]-Hydrogen Shifts. J. Org. Chem., 2018, 83, 10383-10388.
https://doi.org/10.1021/acs.joc.8b01472

BBAH #6: J.-F. Parent, P. Deslongchamps, High Temperature Isomerization of Benzenoid Polycyclic Aromatic Hydrocarbons. An Analysis through the Bent Bond and Antiperiplanar Hypothesis Orbital Model. J. Org. Chem., 2018, 83, 3299-3304.
https://doi.org/10.1021/acs.joc.8b00095

BBAH #5: G.Deslongchamps, P. Deslongchamps, Bent Bonds (τ) and the Antiperiplanar Hypothesis – the Chemistry of Cyclooctatetraene and other C8H8Isomers. J. Org. Chem., 2018, 83, 5751-5755. https://doi.org/10.1021/acs.joc.8b00809

BBAH #4: J.-F.Parent, P. Deslongchamps, Bent Bonds and the Antiperiplanar Hypothesis and the Reactivity at the Anomeric Center in Pyranosides. Org. Biomol. Chem., 2016, 14, 11183-11198.
https://doi.org/10.1039/C6OB02263D

BBAH #3: G. Deslongchamps, P. Deslongchamps, Bent Bonds and the Antiperiplanar Hypothesis – A Simple Model to Rationalize [1,3]-Sigmatropic Alkyl Shifts. Org. Biomol. Chem., 201614, 7754-7767. https://doi.org/10.1039/C6OB01139J

BBAH #2: G.Deslongchamps, P. Deslongchamps, Bent Bonds and the Antiperiplanar Hypothesis as a Simple Model to Predict Diels-Alder Reactivity: Retrospective or Perspective? Tetrahedron, 201363, 6022-6033.
https://doi.org/10.1016/j.tet.2013.05.008

BBAH #1: G.Deslongchamps, P. Deslongchamps, Bent Bonds, the Antiperiplanar Hypothesis and the Theory of Resonance. A Simple Model to Understand Reactivity in Organic Chemistry. Org. Biomol. Chem., 20119, 5321-5333.
https://doi.org/10.1039/c1ob05393k